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Abstract As the northernmost part of the Indo-Eurasian collision belt, the Pamir-Tian Shan convergence
zone (PTCZ) is a strategic location for understanding intracontinental deformation. Here we present a mag-
netostratigraphic investigation of a continuous section from the Baxbulak region, to better constrain
regional tectonic history. Rock magnetic analyses indicate that hematite and magnetite are the main carriers
of characteristic remanent magnetization. The resulting polarity sequence allows a distinct correlation to
the geomagnetic polarity time scale, showing that the section spans the interval of 29.1–20.7 Ma. Rock mag-
netic results further suggest that paramagnetic and antiferromagnetic minerals dominantly contribute to
anisotropy of magnetic susceptibility (AMS) of the sequence. Thus, the AMS would indicate the preferred
orientations of the mineral grains that are sensitive to tectonic strain. At around 26 Ma, the grouped princi-
pal minimum perpendicular to the bedding diverts to a girdle distribution in a N-S direction, demonstrating
the overprint of tectonic fabric to previous weakly deformed sedimentary fabric. This would be interpreted
as a marked increase in tectonic strain, consistent with various evidence from the Pamir and the neighbor-
ing basin that show the Pamir began to migrate northward. Moreover, the coincident changes in distribu-
tion of AMS principal axes, in both direction and magnitude, are comparable to the regional
counterclockwise rotations observed from paleomagnetic data, likely related to orogenesis.

1. Introduction

The Indo-Eurasian collision has caused extensive intercontinental deformation in Central Asia since the early
Cenozoic. For example, the Pamir Plateau migrated northward by at least 600 km with respect to the stable
Eurasia [Burtman and Molnar, 1993], creating an opportunity to study how the continental crust deforms.
However, the plateau suffers from poorly dated terrestrial sediments and an absence of subduction-related
volcanic units. Therefore, the timing and pattern of the tectonic evolution of the Pamir are still highly
disputed.

On the flanks of the Pamir indentor, Cenozoic deformations are dominated by the sinistral Darvaz Fault
bounding the Tajik Basin to the west and by the dextral Kashgar-Yecheng transfer system (KYTS) bounding
the Tarim Basin to the east (Figure 1a). Paleomagnetic data from the Tajik Basin reveal systematic counter-
clockwise vertical-axis rotations [Bazhenov and Burtman, 1986; Thomas et al., 1994; Burtman, 2000], which are
generally attributed to northwest-directed radial thrusting of the Pamir [Strecker et al., 1995]. In contrast to the
west side, the timing and magnitude of rotations along the KYTS on the eastern flank seem to be site-
dependent [e.g. Chen et al., 1992; Rumelhart et al., 1999; Dupont-Nivet et al., 2002; Huang et al., 2006a, 2009],
even when an identical section is taken [e.g. Li et al., 2013; Bosboom et al., 2014a, 2014b]. Furthermore, a
regional review of existing data leads to competing kinematic models for the Pamir indentation: radial thrust-
ing inducing rotation on both sides [e.g., Strecker et al., 1995], an asymmetric deformation, i.e., radial thrusting
along the west margin and a dextral transfer system along the east margin [e.g., Cowgill, 2010], and a two
stage ‘‘mixing’’ model, i.e., radial thrusting on the west prevailed throughout the Cenozoic, while the Paleo-
gene radial thrusting was followed by Miocene transfer slip along the east side [e.g., Bosboom et al., 2014a,
2014b]. These varied interpretations obscure the timing and approach of the building of the Pamir.

On the north of the Pamir indentor, the Tian Shan was reactivated during the Cenozoic as a result of the
Indo-Asian collision [e.g., Tapponnier and Molnar, 1979; Tang et al., 2012] with little or no northward
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convergence relative to Eurasia since �60 Ma [Huang et al., 2006a]. South of the western Tian Shan is the
Alai Basin, the last vestige of the Mesozoic to early Cenozoic sedimentary basin that formerly connected the
Tajik and Tarim Basins [Şeng€or, 1984; Burtman, 2000]. On the south of the Basin, the Main Pamir Thrust
(MPT) defines the leading edge of the Pamir Plateau. Correlation of the MPT and the Tiklik Fault (Figure 1a),
at the northern and the southern end of the KYTS respectively, suggests �300 km of total northward migra-
tion of the Pamir. Global Positioning System measurements also indicate that the present-day convergence

Figure 1. (a) Sketched relief map with major faults surrounding the Pamir, showing the location of the study section at the eastern part of
the Pamir-Tian Shan convergence zone. Abbreviations: MPT – Main Pamir Thrust; TFF – Talas – Fergana Fault; DF – Darvaz Fault; KYTS –
Kashgar-Yecheng transfer fault; KF – Karakoram Fault; TF – Tiklik Fault; (b) Simplified geological map of the study area with the other two
sections, EKQ and NAT; and (c) Field photograph of the Baxbulak section.
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of 10–15 mm/a between the Pamir and the Alai Basin may be mainly absorbed by the MPT [Reigber et al.,
2001; Zubovich et al., 2010]. As the most extensively deformed region, the convergence zone between the
stationary Tian Shan and the indenting Pamir Plateau is a strategic place for recording regional tectonic
evolution due to the Indo-Asian collision.

Cenozoic continental sediments in the Pamir-Tian Shan convergence zone (PTCZ, Figure 1b) record strati-
graphic information and structural evolution during the orogeny. Here we use paleomagnetic observations
to constrain the chronology and tectonics at the convergence between the Pamir Plateau and the Tian
Shan. Additionally we present a record of anisotropy of magnetic susceptibility (AMS) for a clastic sedimen-
tary outcrop from the eastern portion of the convergence zone, within detailed magnetostratigraphic
framework, to discuss the timing of regional tectonic activities due to the Indo-Asian collision.

2. Geological Setting

Due to the consistent northward indentation of the Pamir Plateau, a formerly contiguous Tarim-Tajik Basin
was gradually isolated during the Cenozoic. This convergent process not only forced the retreat of an epi-
continental sea that once extended into the Tarim Basin [Sun and Jiang, 2013; Bosboom et al., 2011], but
also formed a convergence zone between the Pamir and the Tian Shan, comprising an archive of history of
intracontinental deformation [Coutand et al., 2002; Burtman and Molnar, 1993]. The stratigraphic succession
consists of up to 1500 m of late Cretaceous-early Cenozoic shallow marine strata overlain by 3–10 km of
continental clastic sediments, with increasing grain size and sedimentation rates up the section [CGXSC,
1981; Coutand et al., 2002].

In the eastern area of the PTCZ, as well as the eastern flank of the Pamir, Cenozoic marine sediments (Figure
2) were named the Kashi Group and dated primarily by integrated biostratigraphy [e.g., Tang et al., 1989;
Zhou, 2001; Bosboom et al., 2011, 2014b]. The overlying continental sediments are characterized by brown
clastic sediments with coarsening trend up the section. This is generally interpreted as a fluvial delta plain
with a transition to a debris-flow fan facies. The sediments are loosely constrained to the Neogene-Quaternary
and show a high degree of diachroneity. It is broadly accepted that the marine-continental transition occurred
within the Baxbulak Formation, the uppermost unit within the Kashi Group. The Formation (also spelled Bashi-
bulake Formation) gradually shifts from delta front facies at the piedmont of the Pamir to a sabkha/lacustrine
facies in the Tarim basin, characterized by lateritic sandstones interbedded with brown mudstones and brown
mudstones interbedded with gypseous sandstones, respectively [e.g., Tang et al., 1989; Ma and Yang, 2003].
Due to tectonic overprints, a hiatus in the upper part of the Formation is widely recognizable in most sites
from the southwestern Tarim Basin [e.g., Tang et al., 1992; Sobel and Dumitru, 1997; Cai, 1999], while the
sections with a relatively complete Baxbulak Formation are only distributed along the PTCZ where it was the
regional depocenter during the latest Paleogene-early Neogene [Hao et al., 2002].

Our study section (39.808N, 74.758E, Figure 1c) is the holostratotype of the Baxbulak Formation and holds
the greatest potential of preserving a complete Baxbulak Formation [e.g., CGXRSC, 1981; Hao et al., 1982;
Zhou, 2001; Wang and Chen, 2005]. On the north of the MPT, the Baxbulak section exposes the Kashi Group,
including the Baxbulak Formation, and the overlying Keziluoy Formation along a tributary of the Kizilsu
River. The transition from marine gypsum deposits to the terrestrial red-beds can be easily recognized at
the base of the Baxbulak Formation (Figures 1c and 2a). At our study section, the uppermost marine depos-
its, the Ulagon Formation, consists of thick beds of greenish mudstone and gypsum, which conformably
underlays the Baxbulak Formation. The Baxbulak Formation (Figures 2b and 2c) is characterized by lateritic
mudstones intercalated by siltstones, fine-grained, and thin-beds of gypsum. The Keziluoy Formation nearly
conformably, if not conformably, overlies the Baxbulak Formation and contains brownish red mudstone, silt-
stones, and sandstones (Figures 2d and 2e).

3. Sampling and Methods

We set the zero level for sampling to the base of the Baxbulak Formation and collected two or more sepa-
rate oriented drill cores from each horizon at an interval typically 2–3 m using a portal water-cooled gaso-
line-powered drill. For the study section, the exposed 740 m terrestrial sequence yielded 867 oriented
samples from 414 horizons.
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Core samples about 2 cm in length for thermal demagnetization were cut in the laboratory and selected
leftovers of these samples were subjected to rock magnetism analysis. The measurements of rock magne-
tism and paleomagnetism were performed at the Paleomagnetism and Geochronology Laboratory of the
Institute of Geology and Geophysics, Chinese Academy of Sciences (IGGCAS). On six selected samples for

Figure 2. Regional stratigraphic units and lithologic column of the study section. Photos showing sedimentologic features at the Baxbulak
section. (a) the marine/terrestrial boundary at the section; (b) ripples in siltstone beds of the upper Baxbulak Formation; (c) tabular cross-
bedded sandstone in the upper Baxbulak Formation; (d) couplets of brownish siltstones and mudstones in the lower Keziluoy Formation;
and (e) trough cross-bedded siltstone in the middle Keziluoy Formation.
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different horizons of the section, both temperature independence of magnetic susceptibility (k-T curve) and
acquisition and backfield demagnetization of isothermal remanent magnetization (IRM) were conducted.
The k-T curves were measured in a magnetic field of 300 A/m at a frequency of 875 Hz by heating from
room temperature to �7008C in an argon atmosphere, using an AGICO KLY-4 Kappabridge coupled with a
CS-3 apparatus. IRM curves and hysteresis loops were determined by a vibrating sample magnetometer
(Princeton Measurements, MicroMag 3900) at room temperature. Anisotropy of magnetic susceptibility
(AMS) was measured on one oriented specimen for each sampled horizon using an AGICO KLY-3 Kappa-
bridge. It is well documented that tectonic fabrics can be rapidly locked in weakly deformed mudrocks
shortly after deposition and prior to lithification [Borradaile and Henry, 1997; Par�es, 2004]. In the Lake Issyk-
Kul, merely 300 km NE away from the study section, the directly dated sediments that recorded tectonic
fabrics provided the first straightforward estimation of the �1 kyr lag between sediment deposition and
tectonic overprinting [Larrasoa~na et al., 2011] and revealed an rapid, effective locking (less than 1 m).

Stepwise thermal demagnetization of natural remanent magnetization (NRM) was conducted using an ASC TD-
48 thermal demagnetizer. Generally samples were stepwise heated in temperature increments of 508C–5008C
and subsequently by 30 or 158C to a maximum temperature of 6858C. Magnetizations were measured by a
2G Enterprises 760 three-axis cryogenic magnetometer housed in a magnetically shielded space (<300 nT).
Demagnetization results were evaluated on stereographic projections and orthogonal vector component dia-
grams [Zijderveld, 1967]. Principal component directions were calculated using a least squares fitting technique
[Kirschvink, 1980] and interval mean results evaluated using Watson bipolar mean [Fisher et al., 1987]. All the eval-
uations are conducted using the program PMGSC developed by Randy Enkin.

4. Results

4.1. Rock Magnetism
k-T curves and acquisition and backfield demagnetization of IRM are useful for revealing magnetic mineral-
ogy. The k-T curves of the all selected samples from the Baxbulak section feature a major decrease in
magnetic susceptibility when heated to around 5808C, with a minor decrease above 6008C (Figure 3a), indi-
cating the presence of magnetite and probably hematite. Most samples show significant increase in mag-
netic susceptibility at 400–5808C (e.g., samples KZ14, KZ168, BS3, BS41 in Figure 3a), implying that there
exists newly formed magnetite. This probably results from dewatered Fe-bearing clay minerals or the ther-
mal breakdown of greigite [Dunlop and €Ozdemir, 2001; Roberts et al., 2011], which is present as a rare acces-
sory mineral in some samples.

The presence of mixed magnetite and hematite assemblages is also expressed in IRM acquisition curves
and hysteresis loops. Additionally, samples from the Keziluoy Formation showed lower concentrations of
hematite than those from the Baxbulak Formation. Specimens from both formations contain a mixture of
high and low coercivity minerals, resulting in waspwaisted hysteresis loops that do not reach true saturation
even after exposure to applied fields of 1.5 T (Figure 3c). These two coercivity components can be isolated
using the method of Kruiver et al. [2001] (data provided in supporting information Table S1). However, the
greater extent of high coercivity minerals in the Baxbulak Formation samples is also supported by a number
of more straightforward observations. First, Baxbulak specimens have higher bulk coercivities and coerciv-
ities of remanence (Figure 3b). Second, Baxbulak specimens acquire 80% of the SIRM intensity only after
exposure to fields of >600 mT, while Keziluoy specimens are able to acquire this same fraction of SIRM
intensity after exposure to a 400 mT applied field. Third, Baxbulak specimens have higher squareness values
(Mr/Ms) than those of the Keziluoy Formation. Thermal demagnetization experiments also show significant
fractions of remanence persisting between temperatures of 600 and 6858C (Figure 4), indicating that this
high coercivity phase is indeed hematite.

4.2. Magnetic Remanence Directions
Stepwise thermal demagnetization trajectories (Figure 4) clearly show that the NRM in most samples is com-
posed of two components: a low-temperature component isolated by the first few steps (generally below
4008C) followed by a characteristic remanent magnetization component (ChRM) isolated at higher tempera-
tures. The ChRM is of dual polarity and decays univectorally toward the origin on orthogonal diagrams. The
ChRM is mostly removed at temperature steps between 400 and 6858C, showing a similar magnetization
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Figure 3. (a) Low-field temperature dependence of magnetic susceptibility (k-T curves) of selected samples. The gray thick curve is a eight-
fold amplified heating curve just for better display; (b) behavior of acquisition and back-field demagnetization of IRM for the samples.
Note the change in the horizontal scale on either side of B 5 0; and (c) magnetic hysteresis loops for the samples from the Baxbulak (gray-
filled) and Keziluoy Formations.
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direction above and below 5808C. The demagnetization characteristics indicate that hematite and magne-
tite are the dominant carriers of the ChRM, both recording the similar magnetic field direction.

Following demagnetization, 88 samples out of the 414 samples were rejected because their maximum
angular deviations were >158. The remaining 326 samples yield well-defined ChRMs. After tilt correction,
these ChRM directions result in an antipodal distribution of 186 normal and 140 reversed orientations on
the stereographic projection (Figure 5a). The 186 normal ChRM directions yield an overall mean of declina-
tion D5348.38 and inclination I 5 42.48 (k 5 7.4, a95 5 4.18), and the 140 reversed ChRM directions yield an
overall mean D 5 174.88 and I 5 236.88 (k 5 7.1, a95 5 4.88). Although the means of all polarity zones nar-
rowly fail a reversal test (c 5 7.5> cc 5 6.3) [McFadden and McElhinny, 1990], when the section is subdivided
into five segments, their confidence intervals for the normal and reversal antipodes overlap at the 95% level
(plots provided in supporting information Figure S1), thereby passing the bootstrap reversal test [Tauxe,
1998]. This suggests that these sediments were deposited in an actively deforming environment that may
experience progressive rotation with time [Sanson-Hysell et al., 2009].

In order to perform a meaningful test, these 326 ChRM directions are stratigraphically grouped into 21 sites
(Table 1). The overall group-mean direction is D 5 177.88, I 5 17.18 (k 5 2.5, a95 5 26.18) before tilt correction
and D 5 351.98, I 5 40.28 (k 5 50.9, a95 5 4.58) after tilt correction, showing a significant improvement by tilt
adjustment (Figure 5b). No tilt test can be performed on the single study section due to the monoclinal
bedding (Figure 1c). Here we applied the tilt test to several sites from the PTCZ (NAT and EKQ sections in
Figure 1b) where the bedding tilts are markedly different (all data for fold tests provided in supporting
information Table S3). The direction-correction tilt test [Enkin, 2003] yields an optimum clustering at
94.38 6 3.37% (Figure 5c), and the syntilt Fisher analysis [Watson and Enkin, 1993] produces an optimum
degree of untilting at 92.7 6 2.1% (Figure 5d). Again, the ChRM directions did not pass the tilt tests, possibly
because of incomplete isolations of pre-/post-tilting components, and/or differences in age of remanence
between the sites. Considering the insignificant differences in the overall mean direction at 90.0% unfolding
(D 5 351.68, I 5 49.98, a95 5 3.58) from that at 100% unfolding (D 5 351.98, I 5 40.28, a95 5 4.58), we still
assume that the ChRM is of a primary origin.

4.3. Magnetostratigraphy
The declination and inclination of ChRM from 326 horizons were used to calculate virtual geomagnetic pole
(VGP) latitude. The VGP latitudes were organized into stratigraphic levels to build the magnetic polarity

Figure 4. Orthogonal demagnetization diagrams showing typical thermal demagnetization behaviors of the studied samples. Demagnetization steps are in 8C, and stratigraphic direc-
tions are plotted. Solid and open circles represent vector endpoints projected onto the horizontal and vertical planes, respectively.
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sequence, with each chron being constrained by at least two samples from different levels (Figure 6). A
total of 13 normal magnetic chrons (N1–N13) and 12 reverse ones were thus identified in the Baxbulak
section.

Figure 5. (a) Equal-area stereonet of the 326 ChRM directions at the Baxbulak section, shown in geographic (in situ) and stratigraphic (tilt
corrected) coordinates; (b) the stratigraphically grouped 21 sites mean directions (Table 1) of ChRM in geographic and stratigraphic coordi-
nates; (c) the DC tilt test for 45 sites: 21 group-mean directions from the study section, 15 site-mean directions from the EKQ section, and 9
site-mean directions from the NAT section. The sections are marked in Figure 1b; and (d) The syntilt Fisher analysis for the 42 mean direc-
tions, showing an optimal degree of untilting at 92.7 6 2.1%. The required data for fold tests can be found in supporting information files.
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Biostratigraphic information of the underlying and overlying strata constrain a chronological range to the
section for magnetostratigraphic correlation. From the greenish mudstone just underlying the gypsum
beds at the base of the sampled section, the presence of coccolith Nannotetrina fulgens (NP14/NP15 bound-
ary marker) [Agnini et al., 2006; Molina et al., 2011] indicates its basal age younger than the late Middle
Eocene [Tang et al., 1989], and the Ammonia fauna found in the overlying Anju’an Formation suggests a ter-
minal age older than the mid-Miocene [Hao et al., 1982].

With these constraints, we correlated the observed polarity sequence with the geomagnetic polarity time
scale (GPTS) [Ogg, 2012] using a numerical correlation method based on the Dynamic Time Warping algo-
rithm [Lallier et al., 2013]. We ran the program 5000 times to find 50 potential correlation options. As a result,
the 10 minimum cost correlations (i.e., best correlating) unanimously date the sequence to the GPTS chrons
from C11n.1n to C6An.2n with only a few minor disagreements between them. We adopted the sole option
with the least cost (Figure 6), resulting in absolute ages of the section from 29.1 to 20.7 Ma. This preferred
correlation also defines the Baxbulak/Keziluoy boundary to be close to the base of the chron C8n.2n, �26 Ma.

A plot of magnetostratigraphic age versus stratigraphic level (Figure 7) suggests mean sediment accumula-
tion rate (SAR) in the Baxbulak section of 8.4 cm/ka, comparable to those of the surrounding sites from the
same period [e.g., Huang et al., 2006a,b; Charreau et al., 2009a; Tang et al., 2012]. Moreover, the plot shows
an increase in SAR, from �8.0 cm/ka to 10.2 cm/ka, occurred at 22.5 Ma, roughly coincident with the
appearance of highly frequent sandstones within the study section.

4.4. Anisotropy of Magnetic Susceptibility
Bulk magnetic susceptibility (Km) and its anisotropy were determined, and corrected anisotropy degree (Pj)
and shape parameter (T) were calculated as defined by Jelinek [1981], showing significant changes with
stratigraphic levels in the study section (Figure 8). Km ranges from 12.4 to 578.9 lSI with an average of
194.6 6 96.4 lSI. At 293 m, Km markedly increases to �400 lSI from �133 lSI, followed by a slightly
decreasing trend up the section. A similar change is also observed in the Pj sequence that presents a rapid
increase at the same stratigraphic level and progressively decreases. However, variations in T remain rela-
tively constant, demonstrating an independent character to the magnitude of anisotropy and magnetic sus-
ceptibility of the sample.

Equal-area stereographic projections of the Kmax and Kmin principal axes of the AMS ellipsoids are shown in
Figure 9. The tilt-corrected Kmax are grouped in the direction parallel to the fold axis with a low-mean incli-
nation (mean declination 5 105.58, mean inclination 5 15.08), while the tilt-corrected Kmin show a slight gir-
dle distribution perpendicular to the fold axis. These distribution patterns of the principal axes are also

Table 1. Summary of the Interval-Mean Directions of ChRM From the Baxbulak Section

Site ID Stratigraphic Level (m) N Dg Ig Ds Is ks/kg a95s/a95g

KZ-12 735.4-692.5 15 175.3 16.1 352.1 32.2 5.9/5.9 13.0/13.0
KZ-11 690.7-643.6 17 182.9 12.1 359.4 38.1 5.1/5.1 13.7/13.8
KZ-10 642.1-606.7 14 179.0 18.9 357.2 30.6 5.5/5.5 14.6/14.6
KZ-09 603.5-573.2 15 175.1 2.7 345.4 44.5 10.4/10.4 8.6/8.6
KZ-08 571.0-543.8 17 176.0 9.3 350.0 38.8 8.1/8.1 9.6/9.6
KZ-07 540.0-512.7 13 166.7 15.2 342.8 31.3 6.5/6.5 14.4/14.3
KZ-06 508.4-465.3 15 353.3 0.9 339.9 51.2 4.7/4.7 15.3/15.4
KZ-05 463.4-435.1 14 177.9 8.8 352.4 44.9 6.5/6.6 12.4/12.1
KZ-04 434.0-406.0 19 166.1 12.7 342.2 35.4 8.8/8.8 8.7/8.7
KZ-03 402.5-371.6 15 176.7 11.3 353.1 38.2 6.8/6.8 12.2/12.1
KZ-02 368.9-333.1 18 351.8 0.4 342.0 49.1 6.1/6.3 11.5/11.5
KZ-01 330.7-296.5 18 163.6 2.1 335.9 38.4 5.5/5.5 12.8/12.6
BS-09 291.4-266.1 15 179.5 2.7 351.8 45.3 5.2/5.2 14.9/14.9
BS-08 263.0-239.8 16 194.1 9.6 13.2 41.3 5.2/5.2 13.6/13.6
BS-07 236.7-198.4 17 357.0 3.5 344.8 50.1 3.7/3.7 25.2/25.1
BS-06 197.0-174.2 15 2.1 4.8 351.6 53.2 6.7/6.5 16.0/16.3
BS-05 172.3-140.4 17 191.2 18.7 10.5 32.1 6.0/6.0 12.9/12.9
BS-04 138.6-119.4 14 174.6 14.2 350.0 36.7 5.3/5.2 15.9/16.0
BS-03 117.8-89.9 13 175.7 17.4 352.4 37.2 4.8/4.8 18.8/18.8
BS-02 88.1-44.6 15 197.5 14.8 18.6 41.7 4.1/4.0 22.7/23.0
BS-01 40.9-1.3 14 163.1 23.8 343.1 23.9 5.4/5.4 16.5/16.5
Mean 177.8 17.1 351.9 40.2 50.9/2.5 4.5/26.1
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observed in deformed sediments from neighboring foreland basins [e.g., Huang et al., 2006b; Charreau
et al., 2009a; Tang et al., 2012; Lu et al., 2014; Yu et al., 2014].

5. AMS-Derived Tectonic History

Unlike the ChRM behavior, which is dominated by magnetite and hematite (Figure 3), the magnetic proper-
ties of the Baxbulak section are largely controlled by only anisotropic hematite. This assertion is based on
(1) the overall low Km (Figure 8), suggesting that the ferromagnetic contribution can be safely neglected
and anisotropy is mostly relevant to antiferromagnetic minerals [Hrouda and Kahan, 1991]; (2) quantitative
estimation of paramagnetic component on the base of thermomagnetic curves (Figure 3a, data provided in
supporting information Table S4) [Hrouda et al., 1997]; and (3) the elongated distribution of Pj-T data, both
of the Baxbulak and of the Kezluoy Formation, not passing through or toward the magnetite AMS ellipsoid
(Figures 10a and 10b) [Par�es, 2004]. These suggest that the AMS data of the study section expresses a crys-
tallographic preferred orientation for antiferromagnetic minerals, which closely correlated to strain under a
variety of sedimentary and tectonic environments [Borradaile and Henry, 1997; Par�es, 2004].

Figure 6. Magnetostratigraphic results of the Baxbulak section and its ‘‘least cost’’ correlation [Lallier et al., 2013] to the GPTS [Ogg, 2012].
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As observed from neighboring foreland basins, the original magnetic fabric of the study section should sur-
vive the competing geological processes, such as sedimentary compaction, transport dynamics, and layer-
parallel tectonic strain. Compaction generally results in more oblate fabrics and/or increasing anisotropy
degree as a function of depth. Neither is observed from the sequences of T and Pj (Figure 8). If the transport
dynamics dominate magnetic fabric signals, one would expect weak anisotropy degrees (commonly below
1.10), mean Kmax parallel to transportation direction, and mean Kmin nearly perpendicular to bedding. Spe-
cifically, the primary sedimentary fabrics from the study section would be typified by N-S striking Kmax with
Kmin perpendicular to the bedding, significantly different from the observed fabric records. The observed
Kmax direction of the overall section is near E-W and parallel to the strike of the tilted strata, undoubtedly
indicating the overprint of tectonic fabrics to the primary sedimentary fabrics.

In order to track potential changes in the AMS parameters, we divided the section into two parts where the
Km and Pj change and calculated their mean directions of the Kmax and Kmin axes (Figure 10). For the lower
part of the section, the Baxbulak Formation (Figure 10c, 29.1–26.0 Ma), the Kmin clustered around the bedding
pole with mean inclination of 86.78, while Kmax is near parallel to the fold strike, with mean declination of
85.68 and mean inclination of 2.48, showing a typical character of sedimentary fabric that initially experienced
an embryonic overprint by a weak strain [Borradaile and Henry, 1997; Par�es, 2004; Larrasoa~na et al., 2011].

Figure 7. Age versus stratigraphic level plot of the Baxbulak section, using the data from Figure 6.
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For the upper portion, the Keziluoy Formation (Figure 10d), Kmax forms a clear girdle distribution roughly
along the fold axes (its shape parameter of eigenvalues [Woodcock, 1977] is 0.54). Meanwhile, the Kmin diverts
from the bedding pole and is greatly trended to the north, with mean declination of 19.28 and mean inclina-
tion of 12.68, which is along the strain direction. This is a typical feature of tectonic overprint on sedimentary
fabric, generally connected with an extensive deformation in strata. Change in the distribution of the princi-
pal anisotropy axes suggests that, at least from the basal age of the section, the study region was persistently
under a near N-S strain, with a significant increase in strain at 26 Ma.

Figure 8. AMS results for the Baxbulak section, showing mean magnetic susceptibility (Km), corrected AMS degree (Pj), and shape parameter (T). Dashed horizontal line indicates onset of
change in susceptibility parameters.
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The increased strain derived from the distributions of principal anisotropy axes is further verified by the
increasing anisotropic magnitude (Pj) from the Baxbulak to the Kezluoy Formations, as shown in Figure 8.
According to empirical observations [e.g., Par�es and van der Pluijm, 2002; Liu and Sun, 2012; Tang et al.,
2012] and numerical simulations [e.g., Benn, 1994; Lehmann et al., 2013], the evolution of magnetic parame-
ters Pj and T with strain in mudrocks involves two stages. In the first stage, from compact to weakly
deformed regions like foreland basin, the shape of the AMS ellipsoid features a trend from primary oblate
(T> 0) to prolate (T< 0) with increasing strain, while the magnitude of anisotropy (Pj) remains low and sta-
ble (i.e., 1.10 or less). The second stage, from foreland basin to shear zone with well-developed tectonite, is
characterized by increasing Pj with the AMS ellipsoid returning to oblate. The increase of Pj, together with
changes in distribution of Kmax and Kmin, clearly suggests that around 26 Ma the PTCZ experienced an
increased tectonic strain in nearly N-S direction.

Figure 9. Equal-area stereographic projections of AMS principal axes in geographic (a) and stratigraphic (b) coordinates. Squares and circles denote orientations of Kmax and Kmin axes,
respectively, and solid squares and circles represent their means.
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A variety of evidence has strongly demonstrated the late Oligocene tectonic activity around the Pamir. For
example, paleomagnetic investigations indicate that counterclockwise vertical-axis rotation of thrust sheets
within the Tajik Basin start at the early Miocene [Thomas et al., 1994] and that proximal coarse clastic depo-
sition began around the Aertashi region in the southwestern Tarim Basin at �25 Ma ago [Yin et al., 2002].
This suggests that the northward migration of the Pamir initiated at this time. In the Alai Valley, the coarse-
grain continental clastic rocks began to be deposited over Mesozoic and early Cenozoic units in the late Oli-
gocene [Coutand et al., 2002], reflecting regional tectonic uplift that created the necessary relief and source
areas. Moreover, thermochronologic data from central and eastern Pamir [Sobel and Dumitri, 1997; Robinson
et al., 2007; Amidon and Hynek, 2010] confirmed this period of accelerated exhumation throughout the
region, and further linked this exhumation to initiation of a plate-scale, synchronous crustal thickening [Ami-
don and Hynek, 2010; Stearns et al., 2013]. To date, the paleomagnetic data from the PTCZ, as well as avail-
able sedimentologic and thermochronlogical data, suggest regional tectonic activity occurred around the
late Oligocene.

It is worth noting that the changes in the AMS record reported here seem slightly older than those derived
from thermochronologic and sedimentologic evidence, although all of them are related to regional tectonic
activities. On the study section, for example, the AMS-inferred strengthening of strain occurred at 26 Ma,
�4 Ma prior to the increase in sedimentary accumulation rate (Figure 7). While this discrepancy could be
explained by uncertainties in the dating methods, we highlight the differences in mountain building proc-
esses that are recorded by these methods [Tang et al., 2012]. The AMS sequence tracks regional strain his-
tory that essentially induces crustal deformation, while thermochronologic evidence generally correlates to

Figure 10. Corrected anistropy degree (Pj) versus shape parameter (T) diagrams and density contour diagrams with contour interval of 2%
for AMS data from the Baxbulak section. The data are plotted in two parts to highlight critical changes before (a, c) and after 26 Ma (b, d).
Positive (negative) shape parameter values indicate an oblate (prolate) AMS ellipsoid. The AMS ellipsoid for magnetite (Pj 5 1.18,
T 5 20.30) [Tarling and Hrouda, 1993] is shown in subplots a and b by the triangle.
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rapid exhumation of uplifted mountains. In contrast, increasing grain size and accumulation rate in sedi-
mentary basins commonly record enhanced erosional yields and sediment transport capacity, both of
which are potentially associated with tectonic uplift [Hooke, 2000; Binnie et al., 2007]. In the neighboring
region, tectonic-driven conglomerates propagated basinward with great diachrony [e.g., Chen et al., 2007;
Charreau et al., 2009b; Huang et al., 2010].

As discussed above, the changes in distribution pattern of AMS principal axes would reflect the strengthen-
ing of tectonic strain. Moreover, around 26 Ma, the direction of the AMS principal axes also undergoes a sig-
nificant change (Figure 10). The mean declination of Kmax shifts from 85.6 6 5.68 in the Baxbulak Formation
(Figure 10c) to 124.1 6 13.08 in the Keziluoy Formation (Figure 10d). The mean declination of Kmin shows a
rotation with the similar angle, as observed in the declinations of the ChRMs (Table 1; also plotted in sup-
porting information Figure S2). Two possibilities are tentatively presented here to explain this �308 rotation:
a clockwise rotation of tectonic strain or a counterclockwise rotation of the small block in which the study
section is located. To further constrain the tectonic significance of the AMS records, we collect Cenozoic
paleomagnetic data from the blocks surrounding the Pamir Plateau and, for consistency, recalculate direc-
tion and magnitude of the vertical-axis rotations (Table 2) relative to the stable Eurasia [Besse and Courtillot,
2002]. Cenozoic paleomagnetic data from eastern flank of the Pamir demonstrate somewhat clockwise rota-
tions throughout the Cenozoic, with weak trends of decreasing magnitudes and increasing uncertainties.
On the western flank the data exhibit significant counterclockwise rotations. To the northeastern Pamir,
where the study section is situated, significant, stable counterclockwise rotations are observed, at least since
the Miocene. Based on the similarities of direction, magnitude, and the timing of the initiation of the rota-
tion, we confidently attribute the change in direction of the principal axes of the AMS ellipsoid around 26
Ma to counterclockwise rotation of local blocks.

Recent investigations on the KYTS arrived at a consensus that its dextral slip initiated in the late Oligocene,
although relevant rotations are still not well constrained [e.g., Cowgill, 2010; Li et al., 2013; Bosboom et al.,
2014a, 2014b]. To date, the existing data are insufficient to fully understand the kinematic models for the
origin of the Pamir indentor, which require further paleomagnetic investigation, as well as study of the
structural geology, in the regions near the PTCZ and the KYTS.

Table 2. Review of Paleomagnetic Results From the Surrounding Blocks of the Pamira

Area Age

Site Observed pole Expected direction Rotation

Sourcek s (8N) us (8E) Do (8) Io (8) a95 (8) kop (8) uop (8) dp/dm Dx (8) Ix (8) a95 (8) R (8) DR (8)

Western Pamir
Pulkhakim Miocene 38.0 67.4 343.6 38.1 17.0 69.0 277.6 8.0/15.0 7.9 57.6 4.2 224.3 8.0 Thomas et al. [1994]
Pyryagata Miocene 37.7 68.1 338.4 36.7 22.5 64.5 301.5 26.3/15.4 10.9 57.8 3.6 232.5 12.8 Thomas et al. [1994]
S. Darvaz Eo-Miocene 37.8 68.2 312.0 32.0 9.3 43.4 352.8 10.5/5.9 10.9 57.9 3.6 258.9 10.3 Thomas et al. [1994]
Aksu Miocene 38.1 68.5 347.8 36.6 18.0 69.4 282.7 21.0/12.3 10.9 58.2 3.5 223.1 10.5 Thomas et al. [1994]
N. Pamir Paleocene 39.0 70.0 329.0 40.0 7.3 59.1 317.5 5.0/9.0 11.2 58.9 3.3 242.2 5.6 Bazhenov and

Burtman [1986]
Central and Ne Pamir

N. Kashi Pliocene 39.6 76.0 172.3 239.1 6.5 71.8 279.6 7.8/4.6 4.7 58.4 2.0 212.4 6.7 Huang et al. [2009]
N. Atushi Pliocene 39.8 76.1 166.9 245.1 6.9 272.9 119.7 8.7/5.5 4.8 58.6 2.0 217.9 7.6 Huang et al. [2009]

Miocene 161.5 248.0 8.2 71.4 316.5 10.7/7.0 11.1 60.4 3.4 229.6 10.0 Huang et al. [2009]
EKQ Miocene 39.8 74.6 348.1 42.0 8.1 71.5 290.9 9.9/6.1 11.1 60.5 3.4 223.0 9.1 Huang et al. [2009]
W. Wuqia Eocene? 39.8 74.7 336.9 47.4 5.7 67.9 321.1 7.4/4.8 11.5 60.5 4.0 234.6 8.1 Huang et al. [2009]
Chitral Eocene 36.5 72.3 70.5 59.4 2.3 36.1 135.3 3.0/6.0 13.9 55.6 6.0 56.6 7.2 Klootwijk et al. [1994]
NE Pamir Paleocene 39.4 74.0 43.2 41.5 6.3 50.5 174.0 6.0/10.0 11.2 59.8 3.2 32.0 6.5 Bazhenov and

Burtman [1986]
Eastern Pamir

Qimugen Miocene 38.5 76.5 3.8 38.0 6.9 72.6 244.5 8.2/4.8 7.4 58.7 2.5 23.6 7.1 Li et al. [2013]
Eocene 15.2 30.0 5.6 64.0 221.4 6.2/3.4 14.4 58.2 5.8 0.8 8.4 Li et al. [2013]

Aertashi <33–24 Ma 38.1 76.4 17.6 36.9 5.0 66.8 210.5 5.9/3.4 9.8 54.7 4.5 7.8 6.3 Rumelhart et al. [1999]
33–27 Ma 38.0 76.6 26.3 37.2 5.8 61.5 196.3 6.8/4.0 9.8 54.6 4.5 16.5 7.2 Bosboom et al. [2014a, 2014b]
41–36 Ma 31.2 28.3 3.4 54.2 197.9 3.7/2.0 14.3 57.7 5.8 16.9 7.4 Bosboom et al. [2014a, 2014b]

Kezi 41–40 Ma 38.4 76.4 23.9 36.9 11.1 62.8 200.4 13.0/7.6 14.3 58.1 5.8 13.0 12.3 Bosboom et al. [2014a, 2014b]
Puska Eocene 37.1 78.4 4.3 24.3 8.4 65.3 268.5 9.0/4.8 10.8 58.4 3.3 26.5 7.9 Rumelhart et al. [2002]

aThe central Pamir Plateau is bounded by the Darvaz fault to the west and by the KYTS to the east; k and u represent latitude and longitude, respectively; D, I, and a95 represent
declination, inclination, and associated 95% confidence limits of direction, respectively; Relative rotation to Eurasia [Besse and Courtillot, 2002] is recalculated in the direction-space
approach following Butler [1998] and taken as positive when clockwise; The relative rotation in italics is not statistically distinguishable from the expected direction (R<DR).
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6. Concluding Remarks

Our paleomagnetic study shows that the Baxbulak section spans the interval 29.1–20.7 Ma. This result not
only indicates that the region between the Pamir and Tian Shan received terrestrial deposits since at least
as early as the late Oligocene, but also provides the first temporal constraints for late Oligocene-early Mio-
cene tectonic activity.

The distribution pattern of the AMS principal axes from the section demonstrates that the region was con-
tinuously under strain in a N-S direction during the interval and that the strain significantly increased since
around 26 Ma, roughly consistent with previous investigations of paleomagnetism, sedimentological analy-
sis, and thermochronology on the Pamir and neighboring regions. Meanwhile, the direction of the AMS
principal axes shows a significant counterclockwise rotation, probably associated with tectonic rotations on
the local scale.
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